

Faculty Mechanical Engineering Institute for Automotive Research Department of Advanced Powertrains

A Brief Introduction

Martin Biák

Department of Advanced Powertrains

Sources: Volkswagen, Audi, Hyundai

Ústí nad Labem • 05 June 2018 • Dr. Martin Biák

www.tu-chemnitz.de/mb/alf

Institute for Automotive Research

- > 2 departments
- 29 staff members

Prof. Dr.-Ing.

Thomas von Unwerth (Director) Department of Advanced Powertrains

Department of Advanced Powertrains

- 17 academic & research staff members
- **3 research assistants**
- 3 technical staff members
- 6 external PhD students

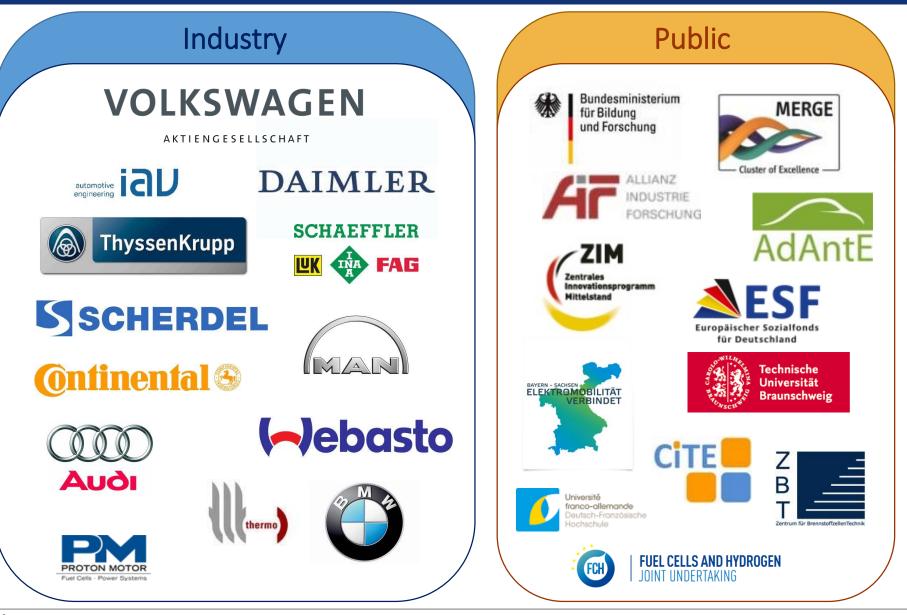
Hydrogen / Chemistry Lab

Powertrain / Component Test Facility

Dep. of Automotive Systems Engineering

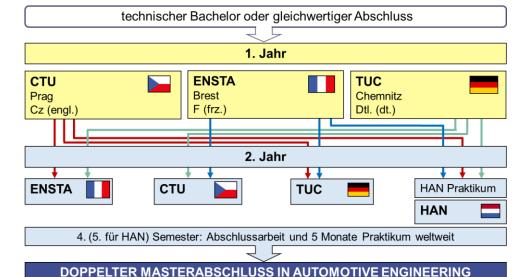
Prof. Dr.-Ing.

Ralph Mayer



2

Partners


Ústí nad Labem • 05 June 2018 • Dr. Martin Biák

www.tu-chemnitz.de/mb/alf

International double-degree programme "Automotive Engineering"

- 2 diplomas from 2 (of four) international universities in 2 years
- In-depth technical knowledge at the highest level and inter-cultural competences
- Unique in Europe
- Study in two different European languages
- Huge advantage for an international career
- Access to the networks of partners of the participating universities

Application for the double degree programme:

- via e-mail to diana.lohse@mb.tu-chemnitz.de (preferred)
- via post: Technische Universität Chemnitz Professur Alternative Fahrzeugantriebe, Diana Lohse 09107 Chemnitz, Germany
- application deadline: 1 June

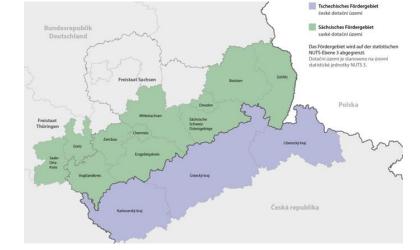
Further information : e-mail: diana.lohse@mb.tu-chemnitz.de, phone: +49 371 531 33794, web: www.emae.eu

H2AC4schools – Závody saských a českých škol PrOJETÍ světa elektromobility s vodíkem

Partners:

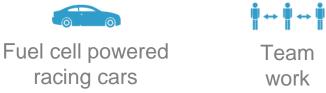
TECHNISCHE UNIVERSITÄT CHEMNITZ

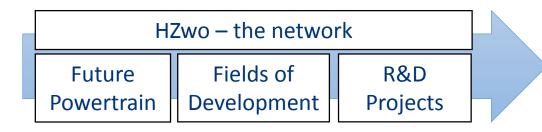
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE

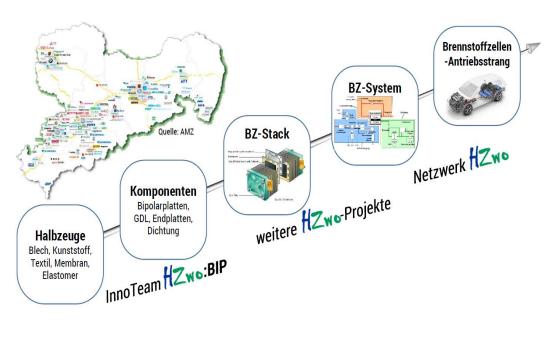


Scope:

Europäische Union. Europäischer Fonds für regionale Entwicklung. Evropská unie. Evropský fond pro regionální rozvoj.


Ahoj sousede. Hallo Nachbar. Interreg V A / 2014 – 2020





Further information : e-mail: diana.lohse@mb.tu-chemnitz.de, phone: +49 371 531 33794, www.sn-cz2020.eu

Settlement of new value chain for leading future powertrain technology in "Autoland" Saxony

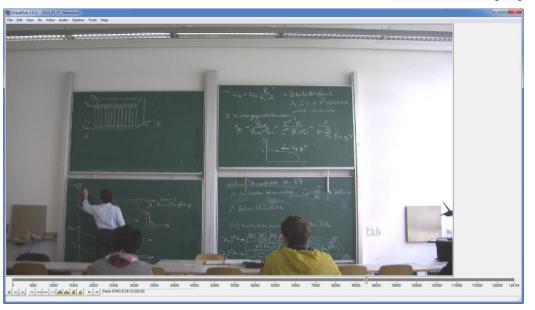
- **R&D for mobile PEM-fuel cell applications,** powertrain components, manufacturing and production processes, series ready components and drivetrain development
- **Project family** hand in hand with saxonian SMEs and research institutes
- Public funding from Saxony
- Installation of single, compound and lighthouse projects
- Start in 2016 with first ESF-funded innovation team for series-ready bipolar plates
- Cluster for production issues applied for funding

Fuel cell and fuel cell systems II in the framework of Schaufenster Mobilität

schaufenster

Eine Initiative der Bundesregierung

• **Motivation:** reduce the workload of the professor and give students the opportunity to revise the subject


E-learning

TECHNISCHE UNIVERSITÄT CHEMNITZ

- NOT only video → slides, blackboard shots and info graphics embedded in video
- Videos accessible on the ALF webpage (password-protected)

				Direktl	inks Mein Profil	Kontakt :	Suchwort		٩
		u	Iniversität Fa	ikultāten Zen	trale Einrichtung	en Studium	Internationa	ı	
	E UNIVERSITÄT EMNITZ	- F	Professur Alternative Fahrzeugantriebe						
TU Chemnitz \rightarrow F	akultät für Maschi	nenbau \rightarrow IAF -	→ Professur Altern	native Fahrzeugan	triebe				
Startseite		Brennstoffzellen II ALF VidLe							
								Logout (Abmelden o	der Benutzer wechsele
2014_04_09	2014_04_16	2014_04_23	2014_04_30	2014_05_07	2014_05_14	2014_05_28	2014_06_04	2014_06_11	2014_06_18
2014_06_25	2014_07_02	2014_07_09	2014_07_16						
		_				1 20	ALE 2014 04 0	0.04	
		Brennstoffzeller	und Brennstoffz	ellensysteme II		1 🐼 2 🐼			
	-		all and the second	- Aller		3 🐼			
						4 🐼			
		Incorporate Develo	Prof. Dr.	-Ing. T. von Unwerth			ALF 2014 04 0		
						6 🐼	ALF 2014 04 0	9-06ii	
						7 🚫	ALF 2014 04 0	9-07ii	

Further information : e-mail: jiri.hrdlicka@mb.tu-chemnitz.de, phone: +49 371 531 34843

Ústí nad Labem • 05 June 2018 • Dr. Martin Biák

8

Thank You for Your Attention

Backup slides

Ústí nad Labem • 05 June 2018 • Dr. Martin Biák

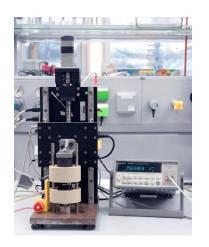
www.tu-chemnitz.de/mb/alf

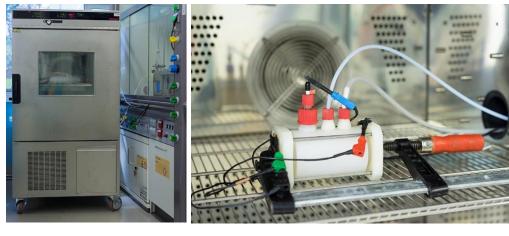
Hydrogen lab

- Designed for fuel cell systems
- Ventilation designed to cope with the stored hydrogen (7 kg H₂ 5.0)

Chemistry lab

- Characterization of components and single cells
- Testing of short stacks





BiPolar Plates, Gas-Diffusion Layer, Membrane-Electrode Assembly, anode loop, etc.

- Resistivity measurements (through-plane: bulk/contact)
- Corrosion measurements (potentiostatic/-dynamic)
- Mechanical tests (tensile/flexural/torsion)
- Permeation tests (being built right now)

Single-cell and short-stack tests

- Single cells up-to 100 A (depends on config of power loads)
- Short stacks, big cells up-to 600 A (depends on config of power loads)

Greenlight Innovation G700

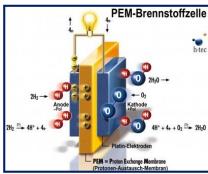
- Characterization and testing of FC stacks, FC systems and FC system components
- Automotive-, train-, airborne- and maritime- systems
- Systems up-to 150 kW_e power loads are available
- hydrogen supply ~2.7 tons of H₂ 5.0 (planned), oil-free air supply 160 g/s at up-to 13 bar, cooling up-to 300 kW
- Tests run under simulated real-world conditions (T, p, φ, a)

→ TU Chemnitz is the first European university and research organization in Germany with the capacity to operate at such power level – Unique in Europe

Continental AG procured the test stand, provided some of the necessary equipment (e.g. compressor, hydrogen storage) and financed the incurred construction measures (up to a reasonable limit)

About Us - Courses

Drive systems I – Powertrain


Introduction to vehicle propulsion technology, Power demand of a vehicle Characteristic diagrams, diagram conversion Gear ratio.

Types and concepts of propulsion Energy stores, energy converters Gearboxes, Output, differential, Impact on fuel consumption

Drive Systems II – Engines

Historical development Procedures, cycles Real motor Ignition and combustion, carburation Forced induction Established motors Engine dynamics Engine components Cylinder, cylinder head, valve train Overall structure of engines

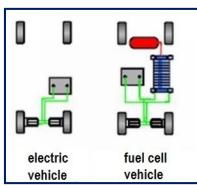
Fuel cells and fuel cell systems I

Introduction to fuel cell and hydrogen technology,

Physical chemical basics,

Structure of a fuel cell system (air subsystem, hydrogen subsystem, cooling subsystem, control subsystem, fuel cell subsystem), Subsystem components, Influence of the components on the overall

efficiencv


Fuel Cells and Fuel Cell Systems II

Fuel cell drive systems Structure, components, efficiencies Fuel cell vehicles (package concepts, platforms) Hybridisation of fuel cell vehicles Control and regulation of fuel cell drives Mobile hydrogen storage

Hydrogen generation, transport and fuelling (infrastructure)

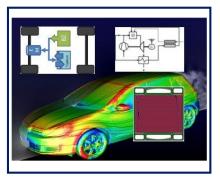
Drive Systems III – Gearboxes gearbox components,

Structure of car transmissions: manual. automated manual, automatic, dual-clutch, gear boxes for hybrid and electric vehicles Functioning, Design and calculation of Starting clutch, torque converter, synchronisations, planetary gearing

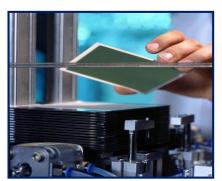
Drive Systems IV – Vehicle Energy Technology

Modelling and balancing of drive systems with regard to energy Energy storage systems Energy flows in drive systems Energy management of hybrid drive systems Battery technologies Control and regulation of drive systems

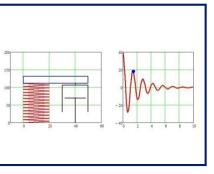
About Us - Courses


Basics of running gear technology

Chassis (wheel/tyre, wheel suspension, steering, brakes, suspension/damping), Driving dynamics (steady, dynamic driving behaviour, electronic stability control systems ABS/ESP) Assistance systems, Electrics/electronics, Motorcycle technology, Utility vehicle technology, Testing (component testing, driving tests)


Engineering design/machine elements

Technical drawing Basics in strength calculation Shaft calculation Calculation of shaft-hub connections Calculation of couplings Design and recalculation of springs Calculation of screws Calculation of bearings Gearing design


Modelling and simulation of fuel cell drive systems

Modelling of fuel cell systems Simulation tools for fuel cell drives HIL/SIL environments Simulation of fuel cell components (CFD/FEM) Simulation of a fuel cell drive system (Matlab/Simulink)

Lab course advanced powertrains (currently being developed)

Energy analysis of a fuel cell Energy analysis of a hydrogen-powered combustion engine Energy analysis of a fuel cell system Control of a fuel cell system

Dynamic simulation of drive systems

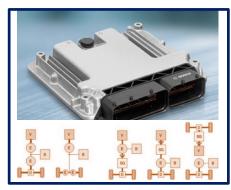
Solving of differential equations Numerical methods for determining zeros Solving of linear and non-linear systems of equations Optimisation, Fourier analysis Combustion simulation Simulation of plain bearings Structural dynamic analysis

part of the following study courses:

- Mechanical Engineering (BA/MA, field of study Automotive Engineering)
- Automotive Production and Engineering (BA/MA)
- Automotive Engineering (MA, Europ. Double degree, since winter term 2014/15)
- Electric Mobility (MA)
- Sustainable Energy Supply Technology (MA)

Ústí nad Labem • 05 June 2018 • Dr. Martin Biák

16



Traction

Battery

About Us – Main Fields of Research

H2

Fuel Cell system

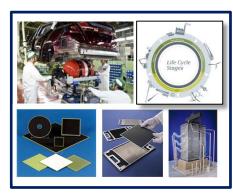
Operational strategies/ energy management

- Fuel cell systems
- Battery management systems
- Thermal management
- Hybrid concepts

Powertrain development

- Hybrid transmission
- Coupling of auxiliary units
- Efficient power distribution
- Innovative concepts

Characterization / system optimization


- Durability
- Performance/dynamics
- Energy density
- Safety

Measuring of Fuel Cells

- Measuring of MEAs
- Characterization of bipolar plates
- Stationary and transient tests for single cells

Modelling and simulation

- Transport processes
- Flow processes
- Vehicle dynamics
- Efficiency
- System dynamics

Manufacturing processes for components

- Fuel cell components
- Fuel cell stacks
- Vehicle integration
- Sustainability, Life cycle assessments

About Us – Main Fields of Research

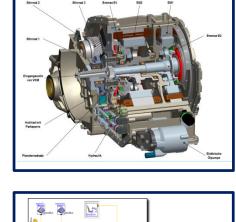
Operational strategies/ energy management

- Fuel cell systems
- Battery management systems
- Thermal management
- Hybrid concepts

Powertrain development

- Hybrid transmission
- Coupling of ancillary units
- Efficient power distribution

Characterisation of components of advanced powertrains


- Durability
- Performance/dynamics
- Energy density
- Safety

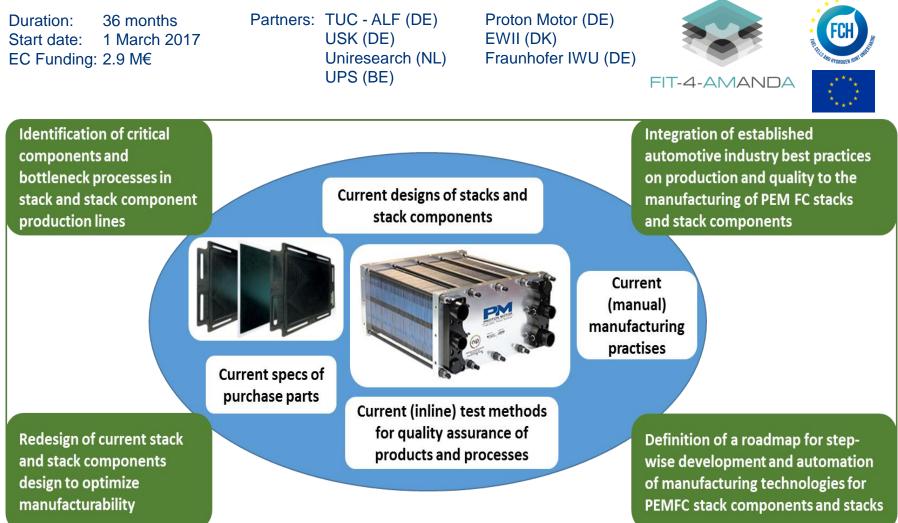
Ecological/economic analysis

- Diffusion of new technologies on the basis of life cycle costs
- Efficiency of energy storage technologies
- Well-to-wheel analyses

Production processes for components

- Fuel cell components
- Fuel cell stacks
- Battery systems
- Vehicle integration

Modelling and simulation

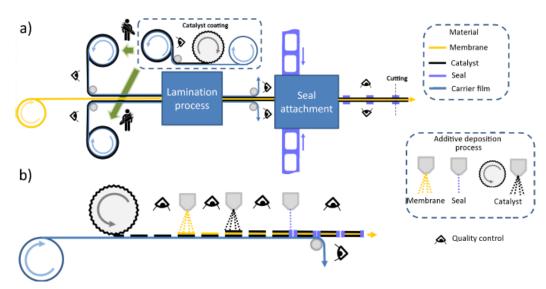

- Transport processes
- Flow processes
- Vehicle dynamics
- Efficiency
- System dynamics

Fit for Automatic Manufacturing and Assembly

For more info: www.fit-4-amanda.eu

Ústí nad Labem • 05 June 2018 • Dr. Martin Biák

19



Mass Manufacturing of MEAs Using High Speed Deposition Processes

Duration: 36 months Start date: 1 Jan 2018 EC Funding: 3.3 M€ Partners: TUC – ALF, DPI (DE) Fraunhofer ENAS (DE) Universita Modena (IT) System SPA (IT) JMFC (UK) INEA (SI) Nedstack (NL)

Process flow for current CCM manufacturing process

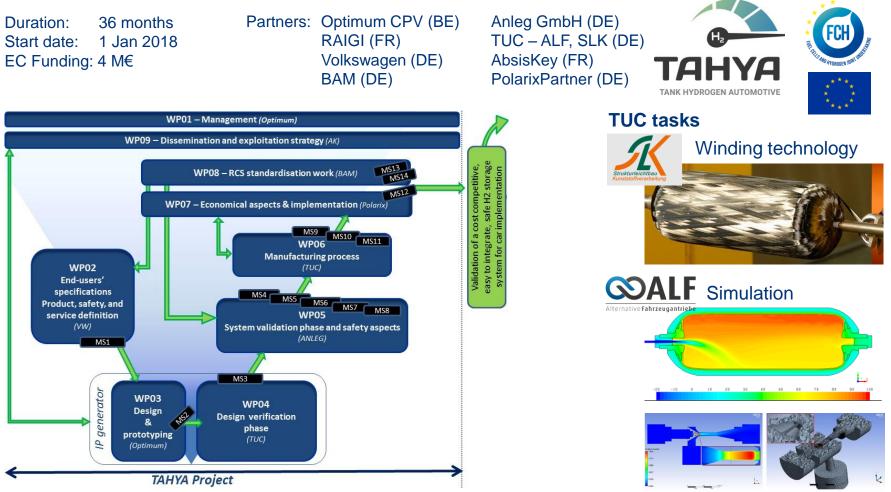
Additive layer manufacturing process for CCM in MAMA-MEA project

For more info: www.mama-mea.eu

Ústí nad Labem • 05 June 2018 • Dr. Martin Biák

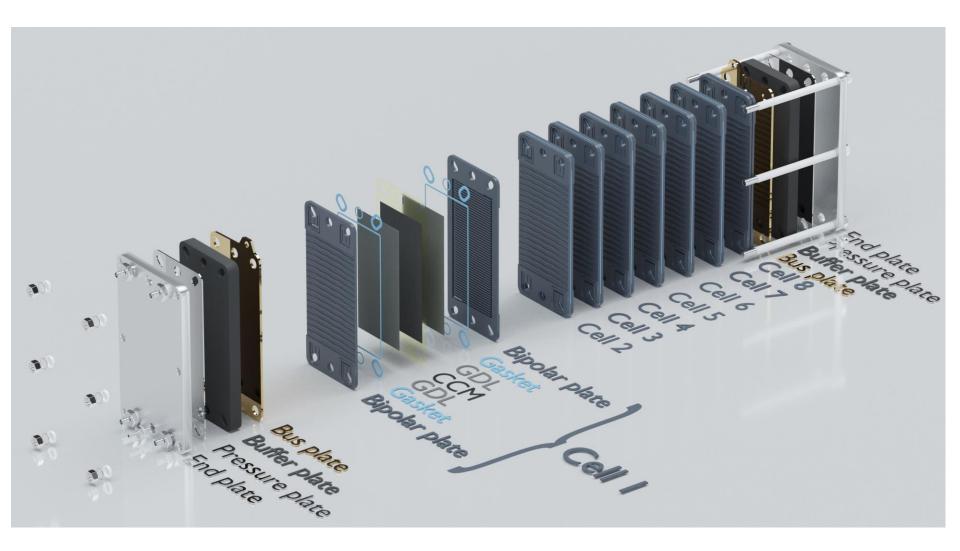
Modular roll-to-roll laboratory system for additive material deposition techniques at TUC

microFLEX – Modular roll-to-roll deposition production line for industrial applications



www.tu-chemnitz.de/mb/alf

Tank Hydrogen Automotive application



Goal: cost competitive, easy to integrate, safe H2 storage system for high volume automotive application

For more info: www.tahya.eu

Fuel Cell Stack